Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.186
Filtrar
1.
J Int Med Res ; 52(4): 3000605241234574, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597095

RESUMO

Blood-disseminated Aspergillus spondylitis in immunocompetent individuals is rare. The clinical, imaging, and pathological manifestations of this condition are not specific. Therefore, this disease is prone to misdiagnosis and a missed diagnosis. Systemic antifungal therapy is the main treatment for Aspergillus spondylitis. We report a case of blood-disseminated Aspergillus versicolor spondylitis in a patient with normal immune function. The first antifungal treatment lasted for 4 months, but Aspergillus spondylitis recurred a few months later. A second antifungal treatment course was initiated for at least 1 year, and follow-up has been ongoing. Currently, there has been no recurrence.


Assuntos
Aspergilose , Espondilartrite , Espondilite , Humanos , Antifúngicos/uso terapêutico , Aspergilose/diagnóstico , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Aspergillus , Espondilite/diagnóstico por imagem , Espondilite/tratamento farmacológico , Voriconazol/uso terapêutico
2.
BMC Microbiol ; 24(1): 111, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570761

RESUMO

BACKGROUND: Aspergillus species cause a variety of serious clinical conditions with increasing trend in antifungal resistance. The present study aimed at evaluating hospital epidemiology and antifungal susceptibility of all isolates recorded in our clinical database since its implementation. METHODS: Data on date of isolation, biological samples, patients' age and sex, clinical settings, and antifungal susceptibility tests for all Aspergillus spp. isolated from 2015 to 2022 were extracted from the clinical database. Score test for trend of odds, non-parametric Mann Kendall trend test and logistic regression analysis were used to analyze prevalence, incidence, and seasonality of Aspergillus spp. isolates. RESULTS: A total of 1126 Aspergillus spp. isolates were evaluated. A. fumigatus was the most prevalent (44.1%) followed by A. niger (22.3%), A. flavus (17.7%) and A. terreus (10.6%). A. niger prevalence increased over time in intensive care units (p-trend = 0.0051). Overall, 16 (1.5%) were not susceptible to one azole compound, and 108 (10.9%) to amphotericin B, with A. niger showing the highest percentage (21.9%). The risk of detecting A. fumigatus was higher in June, (OR = 2.14, 95% CI [1.16; 3.98] p = 0.016) and reduced during September (OR = 0.48, 95% CI [0.27; 0.87] p = 0.015) and October as compared to January (OR = 0.39, 95% CI [0.21; 0.70] p = 0.002. A. niger showed a reduced risk of isolation from all clinical samples in the month of June as compared to January (OR = 0.34, 95% CI [0.14; 0.79] p = 0.012). Seasonal trend for A. flavus showed a higher risk of detection in September (OR = 2.7, 95% CI [1.18; 6.18] p = 0.019), October (OR = 2.32, 95% CI [1.01; 5.35] p = 0.048) and November (OR = 2.42, 95% CI [1.01; 5.79] p = 0.047) as compared to January. CONCLUSIONS: This is the first study to analyze, at once, data regarding prevalence, time trends, seasonality, species distribution and antifungal susceptibility profiles of all Aspergillus spp. isolates over a 8-year period in a tertiary care center. Surprisingly no increase in azole resistance was observed over time.


Assuntos
Antifúngicos , Aspergilose , Humanos , Antifúngicos/farmacologia , Centros de Atenção Terciária , Aspergilose/epidemiologia , Aspergilose/microbiologia , Testes de Sensibilidade Microbiana , Aspergillus , Azóis , Farmacorresistência Fúngica
3.
Mycopathologia ; 189(2): 30, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578519

RESUMO

OBJECTIVE: To study the distribution of pathogenic Aspergillus strains of otomycosis in central China and the identification of their antifungal sensitivity. METHODS: We collected external ear canal secretions clinically diagnosed as otomycosis from April 2020 to January 2023 from the Department of Otolaryngology-Head and Neck Surgery in central China. The pathogenic Aspergillus strains were identified through morphological examination and sequencing. The antifungal sensitivity was performed using the broth microdilution method described in the Clinical Laboratory Standard Institute document M38-A3. RESULTS: In the 452 clinical strains isolated from the external ear canal, 284 were identified as Aspergillus terreus (62.83%), 92 as Aspergillus flavus (20.35%), 55 as Aspergillus niger (12.17%). In antifungal susceptibility tests the MIC of Aspergillus strains to bifonazole and clotrimazole was high,all the MIC90 is > 16 ug/mL. However, most Aspergillus isolates show moderate greatly against terbinafine, itraconazole and voriconazole. CONCLUSION: A. terreus is the most common pathogenic Aspergillus strain in otomycosis in central China. The selected topical antifungal drugs were bifonazole and clotrimazole; the drug resistance rate was approximately 30%. If the infection is persistent and requires systemic treatment, terbinafine and itraconazole can be used. The resistance of Aspergillus in otomycosis to voriconazole should be screened to avoid the systemic spread of infection in immunocompromised people and poor compliance with treatment. However, the pan-azole-resistant strain of Aspergillus should be monitored, particularly in high-risk patients with otomycosis.


Assuntos
Aspergilose , Otomicose , Humanos , Antifúngicos/farmacologia , Otomicose/epidemiologia , Otomicose/microbiologia , Itraconazol , Voriconazol , Terbinafina , Clotrimazol/farmacologia , Aspergilose/epidemiologia , Aspergilose/microbiologia , Aspergillus , Testes de Sensibilidade Microbiana
4.
Swiss Med Wkly ; 154: 3730, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38579310

RESUMO

AIMS OF THE STUDY: Invasive mould infections are life-threatening complications in patients with haematologic cancer and chemotherapy-induced neutropenia. While invasive aspergillosis represents the main cause of invasive mould infections, non-Aspergillus mould infections, such as mucormycosis, are increasingly reported. Consequently, their local epidemiology should be closely monitored. The aim of this study was to investigate the causes of an increased incidence of non-Aspergillus mould infections in the onco-haematology unit of a Swiss tertiary care hospital. METHODS: All cases of proven and probable invasive mould infections were retrospectively identified via a local registry for the period 2007-2021 and their incidence was calculated per 10,000 patient-days per year. The relative proportion of invasive aspergillosis and non-Aspergillus mould infections was assessed. Factors that may affect invasive mould infections' incidence, such as antifungal drug consumption, environmental contamination and changes in diagnostic approaches, were investigated. RESULTS: A significant increase of the incidence of non-Aspergillus mould infections (mainly mucormycosis) was observed from 2017 onwards (Mann and Kendall test p = 0.0053), peaking in 2020 (8.62 episodes per 10,000 patient-days). The incidence of invasive aspergillosis remained stable across the period of observation. The proportion of non-Aspergillus mould infections increased significantly from 2017 (33% vs 16.8% for the periods 2017-2021 and 2007-2016, respectively, p = 0.02). Building projects on the hospital site were identified as possible contributors of this increase in non-Aspergillus mould infections. However, novel diagnostic procedures may have improved their detection. CONCLUSIONS: We report a significant increase in non-Aspergillus mould infections, and mainly in mucormycosis infections, since 2017. There seems to be a multifactorial origin to this increase. Epidemiological trends of invasive mould infections should be carefully monitored in onco-haematology units in order to implement potential corrective measures.


Assuntos
Aspergilose , Hematologia , Mucormicose , Humanos , Mucormicose/epidemiologia , Mucormicose/diagnóstico , Mucormicose/microbiologia , Estudos Retrospectivos , Incidência , Antifúngicos/uso terapêutico , Aspergilose/epidemiologia , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia
5.
Mycoses ; 67(4): e13719, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38551063

RESUMO

BACKGROUND: Surveillance studies are crucial for updating trends in Aspergillus species and antifungal susceptibility information. OBJECTIVES: Determine the Aspergillus species distribution and azole resistance prevalence during this 3-year prospective surveillance study in a Spanish hospital. MATERIALS AND METHODS: Three hundred thirty-five Aspergillus spp. clinical and environmental isolates were collected during a 3-year study. All isolates were screened for azole resistance using an agar-based screening method and resistance was confirmed by EUCAST antifungal susceptibility testing. The azole resistance mechanism was confirmed by sequencing the cyp51A gene and its promoter. All Aspergillus fumigatus strains were genotyped using TRESPERG analysis. RESULTS: Aspergillus fumigatus was the predominant species recovered with a total of 174 strains (51.94%). The rest of Aspergillus spp. were less frequent: Aspergillus niger (14.93%), Aspergillus terreus (9.55%), Aspergillus flavus (8.36%), Aspergillus nidulans (5.37%) and Aspergillus lentulus (3.28%), among other Aspergillus species (6.57%). TRESPERG analysis showed 99 different genotypes, with 72.73% of the strains being represented as a single genotype. Some genotypes were common among clinical and environmental A. fumigatus azole-susceptible strains, even when isolated months apart. We describe the occurrence of two azole-resistant A. fumigatus strains, one clinical and another environmental, that were genotypically different and did not share genotypes with any of the azole-susceptible strains. CONCLUSIONS: Aspergillus fumigatus strains showed a very diverse population although several genotypes were shared among clinical and environmental strains. The isolation of azole-resistant strains from both settings suggest that an efficient analysis of clinical and environmental sources must be done to detect azole resistance in A. fumigatus.


Assuntos
Aspergilose , Aspergillus nidulans , Humanos , Azóis/farmacologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergilose/microbiologia , Prevalência , Estudos Prospectivos , Farmacorresistência Fúngica , Aspergillus fumigatus , Hospitais , Proteínas Fúngicas/genética , Testes de Sensibilidade Microbiana
6.
Rev Mal Respir ; 41(4): 283-288, 2024 Apr.
Artigo em Francês | MEDLINE | ID: mdl-38458868

RESUMO

Aspergillus fumigatus is the predominant fungal species causing pulmonary aspergillosis. The present-day anti-aspergillosis arsenal is limited, with a number of molecules occasioning severe side effects (amphotericin B) or provoking significant drug interactions (azole derivatives). Moreover, the recent emergence of azole-resistant A. fumigatus strains is a cause for concern. In this context, antimicrobial peptides (AMPs) are emerging as a promising therapeutic approach and alternative or complement to conventional antifungals.


Assuntos
Peptídeos Antimicrobianos , Aspergilose , Humanos , Farmacorresistência Fúngica , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Antifúngicos/uso terapêutico , Azóis/uso terapêutico , Testes de Sensibilidade Microbiana
7.
Sci Rep ; 14(1): 6156, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486086

RESUMO

Black Aspergillus species are the most common etiological agents of otomycosis, and pulmonary aspergillosis. However, limited data is available on their antifungal susceptibility profiles and associated resistance mechanisms. Here, we determined the azole susceptibility profiles of black Aspergillus species isolated from the Indian environment and explored the potential resistance mechanisms through cyp51A gene sequencing, protein homology modeling, and expression analysis of selected genes cyp51A, cyp51B, mdr1, and mfs based on their role in imparting resistance against antifungal drugs. In this study, we have isolated a total of 161 black aspergilli isolates from 174 agricultural soil samples. Isolates had variable resistance towards medical azoles; approximately 11.80%, 3.10%, and 1.24% of isolates were resistant to itraconazole (ITC), posaconazole (POS), and voriconazole (VRC), respectively. Further, cyp51A sequence analysis showed that non-synonymous mutations were present in 20 azole-resistant Aspergillus section Nigri and 10 susceptible isolates. However, Cyp51A homology modeling indicated insignificant protein structural variations because of these mutations. Most of the isolates showed the overexpression of mdr1, and mfs genes. Hence, the study concluded that azole-resistance in section Nigri cannot be attributed exclusively to the cyp51A gene mutation or its overexpression. However, overexpression of mdr1 and mfs genes may have a potential role in drug resistance.


Assuntos
Antifúngicos , Aspergilose , Antifúngicos/farmacologia , Azóis/farmacologia , Aspergilose/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Farmacorresistência Fúngica/genética , Aspergillus/metabolismo , Mutação , Expressão Gênica
8.
J Control Release ; 368: 483-497, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458571

RESUMO

Fungal keratitis is a refractory eye disease that is prone to causing blindness. Fungal virulence and inflammatory responses are two major factors that accelerate the course of fungal keratitis. However, the current antifungal drugs used for treatment usually possess transient residence time on the ocular surface and low bioavailability deficiencies, which limit their therapeutic efficacy. In this work, natamycin (NATA)-loaded mesoporous zinc oxide (Meso-ZnO) was synthesized for treating Aspergillus fumigatus keratitis with excellent drug-loading and sustained drug release capacities. In addition to being a carrier for drug delivery, Meso-ZnO could restrict fungal growth in a concentration-dependent manner, and the transcriptome analysis of fungal hyphae indicated that it inhibited the mycotoxin biosynthesis, oxidoreductase activity and fungal cell wall formation. Meso-ZnO also promoted cell migration and exhibited anti-inflammatory role during fungal infection by promoting the activation of autophagy. In mouse models of fungal keratitis, Meso-ZnO/NATA greatly reduced corneal fungal survival, alleviated tissue inflammatory damage, and reduced neutrophils accumulation and cytokines expression. This study suggests that Meso-ZnO/NATA can be a novel and effective treatment strategy for fungal keratitis.


Assuntos
Aspergilose , Infecções Oculares Fúngicas , Ceratite , Óxido de Zinco , Animais , Camundongos , Antifúngicos/uso terapêutico , Antifúngicos/farmacologia , Óxido de Zinco/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Ceratite/tratamento farmacológico , Ceratite/metabolismo , Ceratite/microbiologia , Natamicina/uso terapêutico , Infecções Oculares Fúngicas/tratamento farmacológico , Infecções Oculares Fúngicas/metabolismo , Infecções Oculares Fúngicas/microbiologia , Sistemas de Liberação de Medicamentos , Camundongos Endogâmicos C57BL
9.
Microbiol Spectr ; 12(4): e0361423, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38426765

RESUMO

Invasive aspergillosis (IA) and mucormycosis are life-threatening diseases, especially among immunocompromised patients. Drug-resistant Aspergillus fumigatus strains have been isolated worldwide, which can pose a serious clinical problem. As IA mainly occurs in patients with compromised immune systems, the ideal therapeutic approach should aim to bolster the immune system. In this study, we focused on Vγ9Vδ2 T cells that exhibit immune effector functions and examined the possibility of harnessing this unconventional T cell subset as a novel therapeutic modality for IA. A potent antifungal effect was observed when A. fumigatus (Af293) hyphae were challenged by Vγ9Vδ2 T cells derived from peripheral blood. In addition, Vγ9Vδ2 T cells exhibited antifungal activity against hyphae of all Aspergillus spp., Cunninghamella bertholletiae, and Rhizopus microsporus but not against their conidia. Furthermore, Vγ9Vδ2 T cells also exhibited antifungal activity against azole-resistant A. fumigatus, indicating that Vγ9Vδ2 T cells could be used for treating drug-resistant A. fumigatus. The antifungal activity of Vγ9Vδ2 T cells depended on cell-to-cell contact with A. fumigatus hyphae, and degranulation characterized by CD107a mobilization seems essential for this activity against A. fumigatus. Vγ9Vδ2 T cells could be developed as a novel modality for treating IA or mucormycosis. IMPORTANCE: Invasive aspergillosis (IA) and mucormycosis are often resistant to treatment with conventional antifungal agents and have a high mortality rate. Additionally, effective antifungal treatment is hindered by drug toxicity, given that both fungal and human cells are eukaryotic, and antifungal agents are also likely to act on human cells, resulting in adverse effects. Therefore, the development of novel therapeutic agents specifically targeting fungi is challenging. This study demonstrated the antifungal activity of Vγ9Vδ2 T cells against various Aspergillus spp. and several Mucorales in vitro and discussed the mechanism underlying their antifungal activity. We indicate that adoptive immunotherapy using Vγ9Vδ2 T cells may offer a new therapeutic approach to IA.


Assuntos
Aspergilose , Mucormicose , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergillus fumigatus , Mucormicose/tratamento farmacológico , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Fungos , Aspergillus
10.
J Mycol Med ; 34(1): 101466, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382172

RESUMO

Data published on Panamanian fungal disease are scarce, mostly case reports. To date, there is no paper that compiles the burden of fungal disease Here we estimate for the first time the incidence and prevalence of fungal diseases in Panama. Data on fungal disease were obtained from different search engines: PubMed, Google Scholar, Scielo and Lilacs. For population and at risk diseases, we used statistics from worldometer, UNAIDS, and WHO. Incidence, prevalence, and absolute numbers were calculated based on the population at risk. Panamanian population in 2022 was 4,429,739. We estimated that 85,530 (1.93 %) people suffer from fungal diseases. The most frequent fungal infection was recurrent Candida vaginitis (3285/100,000). There are 31,000 HIV-infected people in Panama and based on the number of cases not receiving anti-retroviral therapy (14,570), and previous reports of prevalence of opportunistic infections, we estimated annual incidences of 4.0/100,000 for cryptococcal meningitis, 29.5/100,000 for oral candidiasis, 23.1/100,000 for esophageal candidiasis, 29.5/100,000 for Pneumocystis pneumonia, 15.1/100,000, and for histoplasmosis. For chronic pulmonary aspergillosis (CPA) and fungal asthma we used data from Guatemala and Colombia to estimate COPD and asthma prevalence and WHO report for tuberculosis. We estimated annual incidences of 6.1/100,000 for invasive aspergillosis and prevalence of 31.5/100,000 for CPA, 60.2/100,000 for allergic bronchopulmonary aspergillosis, and 79.5/100,000 for severe asthma with fungal sensitisation. Other incidence estimates were 5.0/100,000 for candidaemia, 0.20/100,000 for mucormycosis, and 4.97/100,000 for fungal keratitis. Even though this report on burden of fungal disease is a forward step, more epidemiological studies to validate these estimates are needed.


Assuntos
Infecções Oportunistas Relacionadas com a AIDS , Aspergilose , Asma , Candidemia , Candidíase , Aspergilose Pulmonar , Feminino , Humanos , Infecções Oportunistas Relacionadas com a AIDS/epidemiologia , Infecções Oportunistas Relacionadas com a AIDS/complicações , Aspergilose/microbiologia , Candidíase/microbiologia , Aspergilose Pulmonar/microbiologia , Asma/epidemiologia , Candidemia/epidemiologia , Incidência , Prevalência
11.
mSphere ; 9(3): e0069523, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38349166

RESUMO

Aspergillus fumigatus is a major invasive mold pathogen and the most frequent etiologic agent of invasive aspergillosis. The currently available treatments for invasive aspergillosis are limited in both number and efficacy. Our recent work has uncovered that the ß-glucan synthase inhibitors, the echinocandins, are fungicidal against strains of A. fumigatus with defects in septation initiation network (SIN) kinase activity. These drugs are known to be fungistatic against strains with normal septation. Surprisingly, SIN kinase mutant strains also failed to invade lung tissue and were significantly less virulent in immunosuppressed mouse models. Inhibiting septation in filamentous fungi is therefore an exciting therapeutic prospect to both reduce virulence and improve current antifungal therapy. However, the SIN remains understudied in pathogenic fungi. To address this knowledge gap, we characterized the putative regulatory components of the A. fumigatus SIN. These included the GTPase, SpgA, it's two-component GTPase-activating protein, ByrA/BubA, and the kinase activators, SepM and MobA. Deletion of spgA, byrA, or bubA resulted in no overt septation or echinocandin susceptibility phenotypes. In contrast, our data show that deletion of sepM or mobA largely phenocopies disruption of their SIN kinase binding partners, sepL and sidB, respectively. Reduced septum formation, echinocandin hypersusceptibility, and reduced virulence were generated by loss of either gene. These findings provide strong supporting evidence that septa are essential not only for withstanding the cell wall disrupting effects of echinocandins but are also critical for the establishment of invasive disease. Therefore, pharmacological SIN inhibition may be an exciting strategy for future antifungal drug development.IMPORTANCESepta are important structural determinants of echinocandin susceptibility and tissue invasive growth for the ubiquitous fungal pathogen Aspergillus fumigatus. Components of the septation machinery therefore represent promising novel antifungal targets to improve echinocandin activity and reduce virulence. However, little is known about septation regulation in A. fumigatus. Here, we characterize the predicted regulatory components of the A. fumigatus septation initiation network. We show that the kinase activators SepM and MobA are vital for proper septation and echinocandin resistance, with MobA playing an essential role. Null mutants of mobA displayed significantly reduced virulence in a mouse model, underscoring the importance of this pathway for A. fumigatus pathogenesis.


Assuntos
Aspergilose , Aspergillus fumigatus , Animais , Camundongos , Equinocandinas/farmacologia , Antifúngicos/metabolismo , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Fungos
12.
Infect Immun ; 92(2): e0038023, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38168666

RESUMO

Macrophages act as a first line of defense against pathogens. Against Aspergillus fumigatus, a fungus with pathogenic potential in immunocompromised patients, macrophages can phagocytose fungal spores and inhibit spore germination to prevent the development of tissue-invasive hyphae. However, the cellular pathways that macrophages use to accomplish these tasks and any roles macrophages have later in infection against invasive forms of fungi are still not fully known. Rac-family Rho GTPases are signaling hubs for multiple cellular functions in leukocytes, including cell migration, phagocytosis, reactive oxygen species (ROS) generation, and transcriptional activation. We therefore aimed to further characterize the function of macrophages against A. fumigatus in an in vivo vertebrate infection model by live imaging of the macrophage behavior in A. fumigatus-infected rac2 mutant zebrafish larvae. While Rac2-deficient zebrafish larvae are susceptible to A. fumigatus infection, Rac2 deficiency does not impair macrophage migration to the infection site, interaction with and phagocytosis of spores, spore trafficking to acidified compartments, or spore killing. However, we reveal a role for Rac2 in macrophage-mediated inhibition of spore germination and control of invasive hyphae. Re-expression of Rac2 under a macrophage-specific promoter rescues the survival of A. fumigatus-infected rac2 mutant larvae through increased control of germination and hyphal growth. Altogether, we describe a new role for macrophages against extracellular hyphal growth of A. fumigatus and report that the function of the Rac2 Rho GTPase in macrophages is required for this function.


Assuntos
Aspergilose , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/microbiologia , GTP Fosfo-Hidrolases , Macrófagos/microbiologia , Fagocitose , Aspergilose/microbiologia , Aspergillus fumigatus/fisiologia , Esporos Fúngicos , Proteínas rac de Ligação ao GTP/genética , Proteínas de Peixe-Zebra/genética
13.
Nat Commun ; 15(1): 33, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167253

RESUMO

Aspergillus fumigatus is a saprophytic fungus that can cause a variety of human diseases known as aspergillosis. Mycotoxin gliotoxin (GT) production is important for its virulence and must be tightly regulated to avoid excess production and toxicity to the fungus. GT self-protection by GliT oxidoreductase and GtmA methyltransferase activities is related to the subcellular localization of these enzymes and how GT can be sequestered from the cytoplasm to avoid increased cell damage. Here, we show that GliT:GFP and GtmA:GFP are localized in the cytoplasm and in vacuoles during GT production. The Mitogen-Activated Protein kinase MpkA is essential for GT production and self-protection, interacts physically with GliT and GtmA and it is necessary for their regulation and subsequent presence in the vacuoles. The sensor histidine kinase SlnASln1 is important for modulation of MpkA phosphorylation. Our work emphasizes the importance of MpkA and compartmentalization of cellular events for GT production and self-defense.


Assuntos
Aspergilose , Gliotoxina , Humanos , Aspergillus fumigatus/metabolismo , Gliotoxina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Aspergilose/microbiologia
14.
Drug Chem Toxicol ; 47(2): 191-202, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36803623

RESUMO

Aspergillus niger causes infections such as otitis and pulmonary aspergillosis in immunocompromised individuals. Treatment involves voriconazole or amphotericin B, and due to the increase in fungal resistance, the search for new compounds with antifungal activity has intensified. In the development of new drugs, cytotoxicity and genotoxicity assays are important, as they allow predicting possible damage that a molecule can cause, and in silico studies predict the pharmacokinetic properties. The aim of this study was to verify the antifungal activity and the mechanism of action of the synthetic amide 2-chloro-N-phenylacetamide against Aspergillus niger strains and toxicity. 2-Chloro-N-phenylacetamide showed antifungal activity against different strains of Aspergillus niger with minimum inhibitory concentrations between 32 and 256 µg/mL and minimum fungicides between 64 and 1024 µg/mL. The minimum inhibitory concentration of 2-chloro-N-phenylacetamide also inhibited conidia germination. When associated with amphotericin B or voriconazole, 2-chloro-N-phenylacetamide had antagonistic effects. Interaction with ergosterol in the plasma membrane is the probable mechanism of action.2-Chloro-N-phenylacetamide has favorable physicochemical parameters, good oral bioavailability and absorption in the gastrointestinal tract, crosses the blood-brain barrier and inhibits CYP1A2. At concentrations of 50 to 500 µg/mL, it has little hemolytic effect and a protective effect for type A and O red blood cells, and in the cells of the oral mucosa it promotes little genotoxic change. It is concluded that 2-chloro-N-phenylacetamide has promising antifungal potential, favorable pharmacokinetic profile for oral administration and low cytotoxic and genotoxic potential, being a promising candidate for in vivo toxicity studies.


Assuntos
Antifúngicos , Aspergilose , Aspergillus , Humanos , Antifúngicos/toxicidade , Anfotericina B/toxicidade , Voriconazol/toxicidade , Voriconazol/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Acetanilidas/uso terapêutico , Testes de Sensibilidade Microbiana
15.
mSphere ; 8(6): e0046823, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38010145

RESUMO

IMPORTANCE: Molds are environmental fungi that can cause disease in immunocompromised individuals. The most common pathogenic mold is Aspergillus fumigatus, which is typically inhaled into the lungs and causes invasive pulmonary disease. In a subset of these patients, this infection can spread from the lungs to other organs including the brain, resulting in cerebral aspergillosis. How A. fumigatus causes brain disease is not well understood and these infections are associated with extremely high mortality rates. Thus, we developed an animal model to study the pathogenesis of cerebral aspergillosis to better understand this disease and develop better treatments for these life-threatening infections.


Assuntos
Aspergilose , Aspergillus fumigatus , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Aspergilose/microbiologia , Pulmão/microbiologia
16.
Epidemiol Infect ; 151: e184, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37846567

RESUMO

Aspergillosis is a rising concern worldwide; however, its prevalence is not well documented in China. This retrospective study determined Aspergillus's epidemiology and antifungal susceptibilities at Meizhou People's Hospital, South China. From 2017 to 2022, the demographic, clinical, and laboratory data about aspergillosis were collected from the hospital's records and analysed using descriptive statistics, chi-square test, and ANOVA. Of 474 aspergillosis cases, A. fumigatus (75.32%) was the most common, followed by A. niger (9.92%), A. flavus (8.86%), and A. terreus (5.91%). A 5.94-fold increase in aspergillosis occurred during the study duration, with the highest cases reported from the intensive care unit (52.74%) - chronic pulmonary aspergillosis (79.1%) and isolated from sputum (62.93%). Only 38 (8.02%) patients used immunosuppressant drugs, while gastroenteritis (5.7%), haematologic malignancy (4.22%), and cardiovascular disease (4.22%) were the most prevalent underlying illnesses. In A. fumigatus, the wild-type (WT) isolates against amphotericin B (99.1%) were higher than triazoles (97-98%), whereas, in non-fumigatus Aspergillus species, the triazole (95-100%) WT proportion was greater than amphotericin B (91-95%). Additionally, there were significantly fewer WT A. fumigatus isolates for itraconazole and posaconazole in outpatients than inpatients. These findings may aid in better understanding and management of aspergillosis in the region.


Assuntos
Antifúngicos , Aspergilose , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Anfotericina B , Estudos Retrospectivos , Voriconazol , Aspergillus , Aspergilose/tratamento farmacológico , Aspergilose/epidemiologia , Aspergilose/microbiologia , Testes de Sensibilidade Microbiana
18.
J Clin Lab Anal ; 37(19-20): e24971, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37798858

RESUMO

BACKGROUND: Viral pneumonia such as COVID-19-associated aspergillosis could increase susceptibility to fungal super-infections in critically ill patients. METHODS: Here we report a pediatric case of Aspergillus quadrilineatus cerebral infection in a recently diagnosed COVID-19-positive patient underlying acute lymphocytic leukemia. Morphological, molecular methods, and sequencing were used to identify this emerging species. RESULTS: Histopathological examination showed a granulomatous necrotic area containing dichotomously branching septate hyphae indicating a presumptive Aspergillus structure. The species-level identity of isolate growing on brain biopsy culture was confirmed by PCR sequencing of the ß-tubulin gene as A. quadrilineatus. Using the CLSI M38-A3 broth microdilution methodology, the in vitro antifungal susceptibility testing demonstrated 0.032 µg/mL MIC for posaconazole, caspofungin, and anidulafungin and 8 µg/mL against amphotericin B. A combination of intravenous liposomal amphotericin B and caspofungin therapy for 8 days did not improve the patient's condition. The patient gradually continued to deteriorate and expired. CONCLUSIONS: This is the first COVID-19-associated cerebral aspergillosis due to A. quadrilineatus in a pediatric patient with acute lymphocytic leukemia. However, comprehensive screening studies are highly recommended to evaluate its frequency and antifungal susceptibility profiles. Before being recommended as first-line therapy in high-risk patients, more antifungal susceptibility data are needed.


Assuntos
Aspergilose , COVID-19 , Micoses , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Criança , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Caspofungina , COVID-19/complicações , Aspergillus , Aspergilose/etiologia , Aspergilose/microbiologia , Micoses/complicações , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicações , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Sistema Nervoso Central , Testes de Sensibilidade Microbiana
19.
BMJ Case Rep ; 16(10)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821144

RESUMO

Aspergillosis is a challenging fungal infection. Voriconazole is an antifungal drug belonging to the triazole group, commonly used for treating invasive aspergillosis, Cryptococcus neoformans and candida infections. We present a case of a man in his late 70s diagnosed with rhino-orbital invasive aspergillosis who developed voriconazole-induced psychosis as an idiosyncratic, adverse drug reaction (ADR); however, he responded to the cessation of intravenous voriconazole and, after starting on an oral antipsychotic, haloperidol. Clinicians need to be cognizant of this rare, idiosyncratic and iatrogenic ADR to voriconazole.


Assuntos
Aspergilose , Infecções Fúngicas Invasivas , Transtornos Psicóticos , Masculino , Humanos , Voriconazol/efeitos adversos , Pirimidinas/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Antifúngicos/efeitos adversos , Infecções Fúngicas Invasivas/tratamento farmacológico , Transtornos Psicóticos/tratamento farmacológico
20.
mBio ; 14(5): e0163323, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37681974

RESUMO

IMPORTANCE: Severe influenza is a risk factor for fatal invasive pulmonary aspergillosis; however, the mechanistic basis for the lethality is unclear. Utilizing an influenza-associated pulmonary aspergillosis (IAPA) model, we found that mice infected with influenza A virus followed by Aspergillus fumigatus had 100% mortality when superinfected during the early stages of influenza but survived at later stages. While superinfected mice had dysregulated pulmonary inflammatory responses compared to controls, they had neither increased inflammation nor extensive fungal growth. Although influenza-infected mice had dampened neutrophil recruitment to the lungs following subsequent challenge with A. fumigatus, influenza did not affect the ability of neutrophils to clear the fungi. Our data suggest that the lethality seen in our model of IAPA is multifactorial with dysregulated inflammation being a greater contributor than uncontrollable microbial growth. If confirmed in humans, our findings provide a rationale for clinical studies of adjuvant anti-inflammatory agents in the treatment of IAPA.


Assuntos
Aspergilose , Influenza Humana , Aspergilose Pulmonar Invasiva , Aspergilose Pulmonar , Humanos , Animais , Camundongos , Influenza Humana/complicações , Aspergilose/microbiologia , Pulmão/microbiologia , Aspergilose Pulmonar Invasiva/microbiologia , Aspergillus fumigatus , Inflamação/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...